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Abstract
The long-range order in strongly coupled dipolar systems has been studied using large-scale
simulations for systems containing up to 100 000 particles. It is found that the boundary
conditions used strongly influence the result. It is found that a periodic system modeled with the
minimum image approximation yields an artificial order, whereas the same system described
using the Ewald summation technique is slightly less long-range ordered, as compared to the
results obtained from studies on a non-periodical spherical droplet. Analytical expressions
together with scaling considerations suggest that dipolar systems are structured on all length
scales. However, more extensive studies are needed to fully assess the impact of using different
boundary conditions on the long-range structure of polar liquids.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The packing of dipolar particles is a fundamental problem
within physics and chemistry that is not fully understood when
the dipolar interaction between the particles is larger than
the thermal energy kT . The problem has been extensively
studied, primarily with theoretical methods [1–35]. The
reference list contains some of the latest and some of the more
fundamental works, but for a more comprehensive review,
the reader is referred to a preceding article [36]. The field
has received increasing interest due to the recent experimental
findings of Shelton [37–41], who suggests, based on scattering
experiments, that ferroelectric domains with a long relaxation
time, of the order of nanoseconds, are observed in dipolar
liquids, provided that the dipole–dipole interaction is large
enough. His findings have been questioned by Pounds and
Madden, based on large-scale (28 000 particles) modeling of
dipolar systems using periodic boundary conditions described
using the Ewald summation technique [31]. On the other
hand, the findings of Shelton have gained some support from
the droplet simulations of similarly sized systems presented in
our previous work, where ferroelectric domains were indeed
observed, however with a much faster relaxation of the dipolar
order [36].

The purpose of this work is to investigate if the
discrepancy between the results obtained in these two previous

studies can be understood, and if so, maybe something new
can be learned from this. In the next section we will shortly
examine some scaling properties of the dipolar interaction that
could be of interest for our understanding of the behavior of
dipolar systems.

2. Scaling considerations

The dipole–dipole interaction has a special position among the
different types of interactions that may occur in uncharged
systems since it is only conditionally convergent. By this
we mean that the formal 1/r 3 behavior of the interaction
is only convergent if the potential is first averaged over all
intermolecular angles.

A general property of a spherical volume in a liquid that
must be fulfilled in order for the studied system to behave
as a dielectric medium is that the average value of μ2/V or
μ2/r 3, where μ is the dipole moment of the volume, V the
size of the volume and r its radius, must be independent of
V . Neumann [15] has shown that there is a unique relation
between the dielectric permittivity of the liquid and the average
values mentioned above. In particular he showed that if the
studied system is surrounded by a medium with the same
dielectric permittivity as that of the sphere, then the following
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equation should hold

〈μ2/V 〉 = kT

4π

(ε − 1)(2ε + 1)

ε
. (1a)

If we instead assume that the surrounding medium has an
infinite dielectric permittivity, as in the case of Ewald boundary
conditions with conducting surroundings, the following
relation should hold

〈μ2/V 〉 = 3kT

4π
(ε − 1). (1b)

In these equations, ε is the relative dielectric permittivity of
the medium and the bracket notation indicates a statistical–
mechanical average.

One can use the Born model for the calculation of the
solvation free energy of a dipole [42]. This model relates
μ2/r 3 to the solvation free energy of a system according to

Gsolv(μ) = − ε − 1

2ε + 1

μ2

r 3
. (2)

If equations (1) and (2) are combined and we use the fact that
the volume of a sphere equals 4πr3

3 , we obtain

Gsolv(μ) = − (ε − 1)2

3ε
kT ≈ −ε

3
kT (3a)

and

Gsolv(μ) = − (ε − 1)2

2ε + 1
kT ≈ −ε

2
kT . (3b)

Equation (3a) is valid when the permittivity of the
surroundings is the same as that of the sphere, and (3b)
holds when the permittivity of the surroundings is infinite.
The last parts of the equations are valid for large ε. The
results are, to our knowledge, new and they show that any
volume large enough to behave as a dielectric medium is
strongly coupled to its surroundings provided that the dielectric
permittivity is large. In this work we focus on systems with
relative permittivities of the order of 100. This means that
the dipole moment in an arbitrarily sized volume is coupled
to the surroundings with ∼30 kT . The average orientation of
the surrounding dipoles is thus extremely well defined.

Since 〈μ2/V 〉 is independent of the volume in a dielectric
medium and N (the number of particles in the volume) is
proportional to V , we may conclude that μ is proportional
to

√
N . We may thus write 〈μ〉 = a

√
N , where a is a

numerical constant independent of N . Formally we may thus
write the average interaction 〈E(μ,μ′)〉 between two equally
large volumes at close contact as

〈E(μ,μ′)〉 ∝ a
√

Na
√

N/r 3 ∝ a2. (4)

In this equation, a
√

N is a measure of the dipole moment of
the volumes and r is the distance between them. The last step
in equation (4) is obtained by using the fact that N ∝ r 3.
The important issue is that this coupling exists on all length
scales, and that dipolar liquids are consequently structured on
all length scales.

To illustrate an interesting property of the dipolar
interaction we may assume that the dipole moment of a volume

was obtained by perfectly ordering all dipoles in the volume.
It can easily be shown that the internal energy for such an
arrangement is zero, apart from a small surface term. For
this configuration we can write that μ = Nμ0, where μ0

is the dipole moment of one particle. If we now use the
configurations generated by a simulation applying periodic
boundaries and the Ewald summation, using the original
particles with dipole moment μ0, but replace these particles
with ‘pseudo-particles’ having the dipole moment Nμ0, and
scale the length scale of the system by a factor N1/3, then the
energy for this new system, which contains N times as many
particles in the simulation box as the original system, will be
exactly N times the energy obtained for the original system.
This means that the energy per particle will be the same in the
two systems.

We may thus conclude that we can obtain the total
interaction energy in a dipolar system by creating order at
any length scale, although the entropic cost, and thus the free
energy, will be different.

3. Model and methods

3.1. Model

We consider a model system composed of N particles in a
cubic volume V at a temperature T . The potential energy U
of the system is assumed to be pairwise additive according to

U =
N−1∑

i=1

N∑

j=i+1

ui j(ri j ). (5)

The interaction between molecules i and j , ui j , is composed
of a Lennard-Jones (LJ) and a dipole–dipole potential (also
referred to as a Stockmayer potential) according to

ui j(ri j) = uLJ
i j (ri j ) + udip

i j (ri j) (6)

with

uLJ
i j (ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

(7)

udip
i j (ri j ) = 1

4πε0

[
µi ·µ j

r 3
i j

− 3(µi · ri j )(µ j · ri j )

r 5
i j

]
(8)

where the size parameter σ and interaction parameter ε

characterize the LJ interaction, µi denotes the dipole vector
of particle i , ri j is the vector between particle i and j , and
ri j = |ri j |.

In this study, we have used the LJ parameters σ =
2.8863 Å and ε = 1.970 23 kJ mol−1. The dipole strengths
were equal to μ = |µ| = 0.105 84, 0.238 13, and 0.343 97e Å.
The number density was held fixed at ρ = 0.038 446 Å

−3

and the temperature at T = 315.8 K. The number of particles
ranged from N = 1000 to 100 000. The parameters of the
system with the largest dipole moment (μ = 0.343 97e Å)
were chosen so as to model a system with long-range properties
similar to those of water and close to those in [22] and [36]. In
reduced units the systems are characterized by ρ∗ = ρσ 3 =
0.9244, T ∗ = kT/ε = 1.333, and μ∗ = μ/(4πε0εσ

3)1/2 =
0.5732, 1.290, and 1.863.
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Table 1. Number of particles, box length, and the truncation in the
real and reciprocal spaces of the Ewald summation for the systems
investigated.

Ewald summation

N L (Å) Rcut (Å) ncut

1 000 29.629 14 7
3 000 42.732 14 9

10 000 63.833 19 11
30 000 92.063 21 15

100 000 137.52 27 15

3.2. Simulation aspects

The properties of the model systems were determined by
performing molecular dynamics (MD) simulations at constant
number of particles, volume, and temperature. The particles
were enclosed in a cubic box with length L, and periodical
boundary conditions were applied. Table 1 provides the box
lengths used.

The long-range dipole–dipole interactions were treated
using two different schemes: (i) the Ewald summation adapted
to dipolar systems [44] using conducting boundary conditions
and (ii) the minimum image (MI) convention. The former
approach formally involves an infinite periodic system where
the dipole–dipole interaction energy is divided into several
terms. The latter approach considers the interaction between
a dipole and its nearest image after considering the periodic
boundary conditions [45]. An Ewald convergence parameter
α = 3.2/Rcut was used in conjunction with the spherical
cutoff distance Rcut in real space and the spherical cutoff ncut

in reciprocal space given in table 1. The LJ interactions were
subjected to (i) the same spherical cutoff as the dipole–dipole
interaction in real space (Ewald summation) and (ii) the same
truncation as the dipole–dipole interaction (MI convention).
Hence, the spherical cutoff distance of the LJ interactions
depended on the boundary conditions and the system size.
However, even for the smallest system size, Rcut ≈ 14 ≈ 3.5σ ,
making the effect on the structure of the cutoff of the LJ
interaction negligible.

The MD simulations were performed using the velocity
Verlet algorithm with the orientations described by quaternions
using a time step �t = 0.001 ps, corresponding to a reduced
time step �t∗ = �t/(mσ 2/ε)1/2 = 0.0011, where the mass
m = 18 g mol−1 has been used. The particles were treated as
spherical tops with the components of the moment of inertia
Ixx = Iyy = Izz = 1 gÅ

2
mol−1. If nothing else is stated,

a simulation involved 105 time steps, hence extending over
tsim = 100 ps or 115 reduced time units. In some cases,
10-fold longer simulations were performed. Berendsen’s [47]
approach of coupling the system to an external bath to preserve
the temperature was used, with a time coupling constant of
100�t . This weak coupling only suppresses the potential
energy drift and does not affect the relevant dynamics of the
system.

The reported uncertainties are one standard deviation and
were evaluated by subdividing the production runs into 10

sub-batches. The integrated Monte Carlo/molecular dynam-
ics/Brownian dynamics simulation package MOLSIM [46] for
molecular systems was employed throughout.

For comparison we will also present data obtained
for droplets of dipolar particles with vacuum surroundings.
The technical aspects of these simulations have been fully
described elsewhere [36]. Apart from the droplet results
presented in the earlier publication, we will also present some
new results obtained for a larger droplet system containing
60 000 particles. The parameters describing the particles of
the droplets are the same as those of the simulations described
above, and the volume per particle is close to 26.0 Å

3
.

3.3. Domain and volume dipole moment analyses

One of the most important issues of the present investigation
is the formation of ferroelectric domains. In this analysis, our
point of departure is the degree of ordering of the directions of
the dipoles in a spherical volume V with radius R centered on
dipole i according to

G
�

k,i (R) = 1

μ2

(
µi ·

∑

j∈V

µ j

)
. (9)

If the dipoles in V are orientationally uncorrelated, G
�

k,i(R) =
1, whereas if they are positively correlated G

�
k,i (R) > 1,

and if they are negatively correlated G
�

k,i (R) < 1. The time

average of G
�

k,i (R) will be denoted Gk,i(R). Moreover, for
a homogeneous system, we can average Gk,i (R) over all the
particles according to

Gk(R) = 1

N

N∑

i=1

Gk,i (R) (10)

which is often referred to as the distance dependent Kirkwood
factor [32]. If the summation in equation (10) extends over
a sufficiently large volume such that all correlations with the
central particle are included and the size of the studied system
is much larger than this volume, the Kirkwood factor gk is
obtained according to

gk = lim
Rsys/R→∞

lim
R→∞

Gk(R)

= lim
Rsys/R→∞

lim
R→∞

1

μ2

1

N

N∑

i=1

(
µi ·

∑

j∈V

µ j

)
. (11)

It should be noted that there is an underlying assumption
that the correlations in the liquid do not have infinite
range, since then the Kirkwood factor gk lacks meaning.
Nevertheless, for each configuration the degree and extension
of the dipole ordering around all particles were determined.

The first nontrivial maximum of G
�

k,i(R), G
�

k,i
max, was used as a

measure of the strength of the dipole ordering around particle

i and the radius at which G
�

k,i (R) displayed its first maximum,
Rmax,i , as the measure of the extension of this region of ordered
dipoles. A maximum was considered as being nontrivial if it

was followed by a decaying G
�

k,i (R) for at least three histogram

3
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Table 2. Total, LJ, and dipole potential energy at different dipole strength, boundary conditions and number of particles.

μ

(e Å)
Boundary
condition N

U
(kJ mol−1)

ULJ

(kJ mol−1)
Udip

(kJ mol−1)

0.105 84 Ewald 1 000 −11.511 0.004 −11.197 0.004 −0.314 0.002
3 000 −11.553 0.002 −11.243 0.002 −0.310 0.001

10 000 −11.590 0.001 −11.280 0.001 −0.310 0.001
30 000 −11.598 0.001 −11.287 0.001 −0.311 0.001

MI 1 000 −11.572 0.004 −11.259 0.004 −0.312 0.002
3 000 −11.622 0.002 −11.313 0.002 −0.310 0.001

10 000 −11.641 0.002 −11.332 0.002 −0.309 0.001
30 000 −11.654 0.001 −11.345 0.001 −0.309 0.001

0.238 13 Ewald 1 000 −15.262 0.003 −10.967 0.004 −4.294 0.004
3 000 −15.304 0.003 −11.015 0.003 −4.290 0.003

10 000 −15.339 0.002 −11.050 0.001 −4.289 0.002
30 000 −15.345 0.002 −11.060 0.001 −4.285 0.002

100 000 −15.374 0.002 −11.090 0.001 −4.284 0.001

MI 1 000 −15.394 0.007 −11.038 0.005 −4.356 0.005
3 000 −15.428 0.005 −11.087 0.002 −4.340 0.004

10 000 −15.418 0.002 −11.105 0.001 −4.313 0.002
30 000 −15.414 0.002 −11.117 0.001 −4.297 0.002

0.343 97 Ewald 1 000 −22.243 0.006 −10.380 0.005 −11.863 0.007
3 000 −22.286 0.004 −10.426 0.002 −11.861 0.004

10 000 −22.317 0.002 −10.461 0.001 −11.856 0.002
30 000 −22.325 0.002 −10.469 0.001 −11.856 0.002

100 000 −22.355 0.001 −10.502 0.001 −11.854 0.001
Ewald, ε = 1 30 000 −22.328 0.002 −10.469 0.001 −11.858 0.002

MI 1 000 −24.30 0.02 −10.539 0.004 −13.76 0.02
3 000 −24.657 0.008 −10.623 0.002 −14.034 0.009

10 000 −24.830 0.002 −10.658 0.001 −14.172 0.003
30 000 −24.907 0.003 −10.675 0.001 −14.232 0.003

Droplet 1 000 −19.678 0.03 −8.625 0.01 −11.292 0.02
3 000 −19.941 0.07 −9.260 0.02 −11.668 0.03

10 000 −21.417 0.04 −9.749 0.02 −11.944 0.03
30 000 −21.869 0.04 −10.061 0.02 −12.101 0.03
60 000 −22.128 0.08 −10.231 0.04 −12.239 0.07

bins, each of them with a width of 0.20 Å, an approach which

should filter out statistical fluctuations. From G
�

k,i
max (i = 1, . . .,

N), a set of domains containing particles with correlated dipole
directions was constructed as follows: A search was made for
the particle with the largest value of G

�
k
max. The sphere with

radius Rmax centered at this particle was considered as being
a domain. The particles inside this domain were excluded
from further searches. The search was then repeated among the
remaining (nonexcluded) particles. The search for ferroelectric

domains was (arbitrarily) stopped (i) if G
�

k
max became less than

50% of G
�

k
max of the first domain or (ii) after identification of 20

domains. It should be noted that by this approach the domains
are not necessarily spatially nonoverlapping.

A quantity that is closely linked to the domains is the
dipole moment of a fixed volume. Kusalik [43] has shown
that the dipole moment probability distribution of a spherical
volume with radius r in a liquid should obey the simple relation

P(μ) = Aμ2 e−αμ2/r3
(12)

where α is a constant that only depends on the dielectric
permittivity of the medium in the droplet and in the
surroundings, and A is a normalization constant. Below we

will present such distributions, whose appearance will reveal
interesting properties of the studied systems.

4. Results

4.1. Energetics

The potential energy U of the system, the LJ potential energy
ULJ and the dipole–dipole potential energy Udip at different
dipole strengths, boundary conditions, and system sizes are
given in table 2. In this table we also present the corresponding
data obtained from Monte Carlo simulations [36] of the same
particles under similar conditions in a droplet using the largest
of the three dipole moments. The most interesting observations
obtained using the MI convention and the Ewald summation
are analyzed as follows:

(i) At increasing dipole strength, ULJ becomes slightly less
negative, whereas the magnitude of Udip increases faster
than μ2. At the largest value of μ, the values of ULJ and
Udip are comparable.

(ii) The MI convention produces a more negative ULJ and a
more negative Udip as compared to the Ewald summation.

(iii) With the MI convention, Udip displays a system-size
dependence that increases with μ, whereas with the Ewald

4
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(a) (b)

(c)

Figure 1. Maximum Kirkwood factor G
�

k
max versus the domain radius Rmax in a log–log representation for systems treated with (a) Ewald

summation, (b) a spherical droplet, and (c) the minimum image convention.

summation the corresponding system-size dependence is
negligible.

(iv) With the two smaller values of μ, Udip extrapolated to
N → ∞ converges to the same value for the two boundary
conditions, but with the largest μ the extrapolated values
differ from each other by 20%.

No energetic comparison is made with the droplet
simulations, since the presence of the surface influence the
droplet energetics significantly. We will just briefly mention
that the energetics of the droplet are similar to those of the
Ewald boundary system.

4.2. Structure

It is standard in these types of studies to characterize the short-
range structure around a dipolar particle. We have also done
this in the present study, but the results are similar to those
reported elsewhere [22, 23] and will not be presented here.
Moreover, we do not find any significant differences between
the Ewald results and the droplet results as far as the short-
range structure is concerned. We will therefore focus only on
the long-range solvation properties. These will shed some light
on the influence of the different boundary conditions used in
this study, but also on the general properties of dipolar liquids.
To illuminate these issues we have chosen to present three
different types of data: (i) information about domain size and

the maximum Kirkwood factor as a function of the boundary
condition and the number of particles in the system, (ii) dipole
moment probability distribution functions and (iii) the effective
particle–particle interaction energy as a function of particle
separation.

4.2.1. Domain size distributions. In figure 1 we present
scatter plots showing the relation between the size of the
domains and their maximum Kirkwood factor, identified by the
procedure outlined in the methods section. Each data point
in the figures represents the size and magnitude of the first
identified domain of each configuration. The data presented
in figure 1(a) was obtained using the Ewald summation,
figure 1(b) presents the droplet data and figure 1(c) shows data
obtained using MI convention. In each figure two lines are
inserted to help the eye identify the slope of the distributions.
From arguments given above one should expect that a liquid
exhibiting dielectric properties would yield a slope of 1.5
in the logarithmic plots, corresponding to μ ∝ r 3/2. For
each boundary condition four different systems with different
numbers of particles are presented.

The most striking feature is the very different behavior
of the MI system, presented in figure 1(c), compared to the
other two systems. The slope observed here is close to 2.5,
indicating a strong non-dielectric behavior. Furthermore, it is
clear that the maximum Kirkwood factor versus domain size

5
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distributions become more localized as the size of the system
grows. It also deserves to be said that in almost all of the
configurations generated using the MI convention the domain
identification procedure finds between 14 and 17 domains,
whereas the spread in the observed number of domains using
the other two boundary conditions is larger. If we calculate the
alignment of the dipoles in the identified domains, that is the
observed maximum Kirkwood factor divided by the number
of particles inside the spherical domain for the domain with

the largest value of G
�

k
max in each configuration, we typically

obtain values between 0.1 and 0.25, where the larger values
are obtained for the larger systems. This indicates that we
are observing a system that gets more and more structured as
its size increases. For the system containing 10 000 particles,
the time correlation function for the dipole vector of the
largest domains remains at a value of ≈1 during the whole
time window of the statistical evaluation (2.0 ps). It is thus
reasonable to characterize the system as frozen on the length
scale of the domains. What has happened is that the system
has adopted configurations where a large part of the interaction
energy is obtained at the length scale of the domains (30–
40 Å). The reason for this is that by this type of structuring it is
possible to localize domains with repulsive interactions outside
the MI box. The effect becomes more pronounced when the
size of the system grows, and it is possible to form structures
with large dipole moments without severely disrupting the
short-range dipole–dipole interaction. We thus see that the
MI convention generates an unphysical behavior of the studied
system. This has been said many times before, and we will
focus the remaining part of this study on the two other types of
boundary conditions.

If we now focus on the other two systems, we see that
the scatter plots indicate that the relation between μ and r
corresponds to a slope between 1.5 and 2. For the droplet
system a larger number of particles seems to imply a somewhat
larger slope, whereas the opposite is true for the Ewald system
where the largest system seems to approach a slope of 1.5. We
also see that the spread in the data is more pronounced for
the droplets than for the Ewald system. It seems reasonable
to assume that this is an effect of the fact that different parts
of the droplets have different surroundings, whereas the Ewald
system is homogeneous. The first difference is, however, more
difficult to understand and we will return to this issue in the
discussions of the next two subsections.

4.2.2. Fixed volume dipole moment distributions. In this
subsection we will look into the probability distributions for
the dipole moment of a fixed volume, and compare our results
to the theoretically predicted functional form of equation (12).

The data that we will present here is the dipole moment
distribution for a fixed spherical volume centered at an
arbitrary particle in the system. For the droplet system this
approach may present problems, since not all dipoles are
surrounded by a sphere with a given radius that is filled with
particles. Moreover, the relative dielectric permittivity of the
region outside the droplet is equal to 1, whereas volumes in
the inner part of the droplet are surrounded by a thinner or
thicker layer of liquid with a higher dielectric permittivity.

For the volumes located in the Ewald system the situation is
more or less the opposite, since all spheres are full of dipoles
and the dielectric permittivity at long distances is infinite.
Considering these problems, one would perhaps consider it
meaningless to compare the different curves obtained, but
we still claim it to be meaningful, which will be explained
below. The data that we will present in this and in the
following subsection was obtained for the two largest studied
systems (an Ewald system with 100 000 particles and a droplet
with 60 000 particles). In figures 2(a) and (b) we present
probability distribution functions describing the normalized
dipole moment probabilities for the different systems and
for spherical volumes of different radii. In figure 2(a) we
present Ewald boundary condition data and in figure 2(b) we
present the results from the droplet system. The different
curves correspond to different radii, varying between 10 and
60 Å. To make the curves comparable, the dipole moments
have been scaled with 1/r 3/2, where r is the radius of the
considered volume. To guide the eye, a curve with α = 0.5
has been inserted in both figures. This corresponds to the
distribution that would be obtained in a bulk system with a
relative permittivity close to 90.

The following observations can be made from figure 2(a):
(i) all the presented curves have a shape similar to that of
the theoretical curve, and (ii) the curves obtained for larger
volumes display larger normalized dipole moments. Two
possible explanations can be given for the latter observation.
Either the increase in the normalized dipole moment is a
consequence of the dielectric response in the system gradually
building up and that a larger sphere being needed to obtain
a converged value, or the increase is due to the fact that the
long-range response is characterized by the infinite dielectric
permittivity used in the Ewald systems. A combination of these
two effects is of course also possible.

If we look at figure 2(b) we see a different pattern. At the
beginning the normalized dipole moments increase when the
size of the sampled volume increases, but for larger volumes
this increase becomes a decrease. The obvious explanation
for this behavior is the same as for the Ewald system: an
increasing number of volumes are empty when the size of
the volumes increases, and the surrounding of the droplet
has a low dielectric permittivity. Another more interesting
observation can however be made, namely that the shape of
the distribution does not follow the theoretical curve, in that
enhanced probabilities for large dipole moments are found, as
compared to the theoretical prediction. This is true for all the
radii studied, but is best seen for the three smallest radii (10,
20 and 30 Å). To illustrate this we present the dipole moment
distributions obtained for these radii in the droplet and Ewald
systems in figure 2(c). In figure 2 it can clearly be seen that
the maximum of the curves occurs at smaller dipole moments
in the droplet, but that there is also a long tail with larger
dipole moments present when using the droplet boundary. The
interesting issue is whether these effects are also present in a
real bulk liquid or if it is in some way induced by the surface
and dies away as we depart from the surface. If the effect
does exist in real bulk liquids, then the results obtained using
the Ewald summation must be influenced by the implicit long-
range structure induced by the periodicity in a similar way to

6



J. Phys.: Condens. Matter 20 (2008) 494204 G Karlström et al

(a) (b)

(c)

Figure 2. Scaled dipole moment distributions for spheres of different radii, obtained using (a) Ewald summation and (b) a spherical droplet.
Panel (c) shows parts of the data from (a) and (b) using a different scale for clarity.

which the MI convention induced an enhanced structure. If so,
the periodic boundary conditions destroy the build-up of long-
range structure. In the next subsection we will look a bit further
into this issue.

4.2.3. Effective particle–particle interaction. In the previous
subsection we observed various degrees of long-range structure
depending on the boundary conditions. Here we will look
for an energetic origin of this structuring. For that purpose
we present the particle–particle interaction calculated from
the Ewald and droplet simulations. In figure 3 we present
the average particle–particle interaction energy as a function
of the particle–particle separation r . To show the distance
dependence the two curves have been multiplied by r 5. There
is a marked difference between the two curves outside 10–
15 Å, in that for the Ewald system, the average particle–
particle interaction decays as 1/r 6 outside 15 Å, whereas for
the droplet system, the curve shows a 1/r 5 behavior to at least
30–35 Å. Outside 35 Å there is a region where the interaction
decreases in magnitude, then there is a region between 45 and
55 Å where a clear 1/r 5 dependence is seen once again. It
should be noted that the statistical uncertainty in the region
outside 35 Å is large for the droplet system [36]. Thus it cannot

Figure 3. Scaled dipole–dipole interaction versus particle–particle
separation for the largest Ewald and droplet systems.

be ruled out that the 1/r 5-dependence region extends only to
∼30 Å, but it could equally well extend to separations of 55 Å.
One could of course ask if there is a connection between the
observed long-range energetics and the structuring discussed

7
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above. The answer is most likely yes. If we consider a volume
and assume that the dipole moment of volume is proportional
to the square of its radius, then using the Born formula for the
solvation free energy of a dipole, the equation (2), we see that
this energy grows linearly with the volume radius. It is easy
to show that this corresponds to an effective particle–particle
interaction decaying as 1/r 5.

5. Discussion and summary

We have seen in the previous section that there is a marked
difference in the long-range structure of a truly periodic
system made from dipolar particles with a large dipole–
dipole interaction and that of a droplet composed of the same
particles. We have also given scaling arguments indicating that
this type of dipolar liquid is structured on all length scales.
It is obvious that the assumption of a periodic system must
influence the structuring on length scales that are comparable
to the simulation box. It is equally obvious that the assumption
of a spherical droplet explicitly defining the boundary may give
an extra flexibility to the dipolar particles close to the surface.
This extra flexibility may favor the formation of an increased
dipolar order. Furthermore, from the MI data presented above
it is clear that the seemingly obvious solution to make the
studied system larger in no way guarantees a more correct
behavior. In fact the formation of unphysical structures using
the MI convention becomes more pronounced as the size of the
system increases, as has been explained above.

One important question remains to be answered: which
type of boundary condition should be preferred when modeling
strongly coupled dipolar systems? To date the answer has been
that one should prefer to model a periodic system using the
Ewald summation technique. Based on the material presented
here, there are reasons to doubt this. However, it is clear
that more extensive studies are needed to fully understand the
impact of using periodic or non-periodic boundaries on the
structure of polar liquids.

We have seen that an arbitrary amount of the dipole–
dipole interaction can be obtained at any length scale. What
determines the actual amount of dipolar interaction energy that
the system prefers to deliver at a particular length scale are
the boundary conditions and the entropy cost that is associated
with structuring the system at that length scale; in figure 2(c)
we showed an increased structuring on the 10–30 Å length
scale in the droplet systems, which is indeed in qualitative
agreement with Shelton’s findings [40]. It should, however,
be noted that the timescale on which we have carried out
our simulations (∼1 ns) is around two orders of magnitude
shorter than the most slowly relaxing mode found by Shelton,
which makes a direct comparison with the experimental results
difficult. Furthermore, since we have shown that a dipolar
system may indeed be structured on all length scales, it seems
plausible that the very long relaxation times (∼50 ns) found
by Shelton will only be observed in the ‘true’ thermodynamic
limit, which is still far away from being reached using
molecular simulations.

All systems that we deal with in real life have a surface.
The question is thus if the structure imposed by the surface

decays in regions that are distant form the surface or not. It
is clear from the arguments given above that the structuring
at the length scale of the simulation box can be influenced
by the boundary in periodic systems. Is it possible that this
influence of the boundary in turn influences the ordering at
shorter length scales? It is further worth noting that we know
for certain that the droplet systems will model the behavior of
a real macroscopic system provided that it contains sufficiently
many particles. We have also seen that the periodic system
modeled using the MI convention will definitely not. The
introduction of an artificial boundary condition, as in the Ewald
systems, may induce an erroneous convergence behavior. It is
thus appropriate to ask the question if a truly periodic system
will converge to the same macroscopic system as the droplet
and a real system. We will finish this report by saying that all
aspects of dipolar systems are not fully understood, and that
the long-ranged structure of such systems is highly dependent
on the choice of simulation techniques used.
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